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1. Introduction 

Network traffic has been discovered to be self-similar over time under numerous circumstances 
in commercial networks (Leland et al., 1994; Willinger et al., 1995).  These are high-capacity 
networks primarily operating under the Transmission Control Protocol/Internet Protocol 
(TCP/IP) or asynchronous transfer mode packet systems (Park et al., 1996; Park and Willinger, 
2000).  Some tactical radio traffic data exist from the Fire Support Team Force Development 
Testing and Experimentation II (FIST FDT&E II).  In addition, the U.S. Army Research 
Laboratory (ARL) has performed analyses of tactical communications protocols in the laboratory 
using controlled radio networks driven by Poisson-generated traffic.  These channels are of 
extremely low throughput by commercial standards, by factors of 5000 or more, and the tactical 
communications protocols are different from those based on the TCP/IP suite. 

This study examines the properties of self-similar traffic using the FIST FDT&E II data and 
synthetic traffic streams generated using Paxson’s fast Fourier transform of fractional Gaussian 
noise (FFT FGN) method (Paxson, 1995).  The field data and the generated traffic data are 
analyzed using several tools, which are discussed in the sections that follow. 

2. Analytical Methods 

2.1 Statistical Methods 

Several tests have been described in the literature (Crovella and Bestavros, 1997; Grossglauser 
and Bolot, 1999; Leland et al., 1994; Park et al., 1996; Park and Willinger, 2000) and employed 
to analyze self-similar traffic.  To date, only the variance-time plot test has been applied.  This, 
in graphical form, is a method for determining whether the traffic stream is multifractal.  Tests 
that analyze a traffic stream and determine a numerical value based on the assumption of 
monofractal composition may be in error if the stream is multifractal. 

The sensitivity of the variance-time method is investigated by generating synthetic traffic with 
multiple self-similar components.  The statistical tool used to analyze the traffic is a software 
program written to determine the variance of sample means vs. the sample size (the “variance-
time plot”).  For events that are independent over time, this tool is based on the relation  

 Var ( X ) = σ 2 n-1. (1) 

For events that are correlated over time and also display scale invariance, 

 Var ( X ) = σ 2 n-β (Beran, 1994). (2) 
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If the variance of the sample means is plotted against the sample size on a log-log graph, the 
slope –β of the resultant line is –1 for independent events.  The factor β is related to the Hurst 
parameter (H), a heuristic measure of the degree of self-similarity, by the expression 

 β = 2(1 – H). (3) 

H typically varies between 0.5 and 1.0.  A value of H = 0.5 corresponds to a sequence of events 
that is not correlated over time; H > 0.5 indicates increasing degrees of self-similarity.  One 
attractive feature of this graphical technique is that it may reveal multifractal behavior.  As the 
degree of self-similarity increases, the traffic stream becomes bursty over all time scales.  Under 
certain conditions, this allows streams of data with more than one component to reveal the 
existence of multiple degrees of self-similarity in the traffic. 

The question arises over just what the variance-time plot reveals.  The literature on self-similar 
traffic treats three types of self-similarity:  (1) strict self-similarity, where the traffic exhibits a 
set scale invariance that defines fractal behavior, (2) second-order self-similarity, and 
(3) asymptotic second-order self-similarity.  The latter two involve the behavior of the 
autocorrelation function, a second-order function.  Autocorrelation implies long-range order or 
dependence.  The problem is that there are self-similar processes that are not long-range 
dependent and long-range dependent processes that are not self-similar.  However, for 
asymptotic second-order self-similar processes and if H > 0.5, self-similarity implies long-range 
dependence and vice-versa (Park and Willinger, 2000).  In this case, the synthetic traffic is 
generated from a self-similar process, fractional Gaussian noise, rather than being merely 
second-order self-similar. 

The tool as written chose the initial aggregation size randomly, within limits.  If the randomly 
chosen aggregation size is >1/6 of the total number of sampled traffic points or <1/10 of the total 
number of points, another aggregation size is drawn.*  The start point is also randomly chosen.  
This usually leads to discarding “orphan” points at the beginning and end of the traffic stream, 
but the sample is chosen large enough that it is felt this could be disregarded.  It is hoped, in this 
way, to compensate for any systematic variation in the traffic.  The aggregation size is then 
decreased by a chosen factor, and the calculation is repeated.  It might be noted that this leads to 
smaller and smaller numbers of orphan points.  When the aggregation size reaches a chosen 
factor, usually <8 points, the calculation is terminated. 

The results obtained using this tool are discussed in sections 3.1–3.2 and appendix A. 

2.2 Synthetic Traffic Generator 

Schuler’s program (Schuler, 1995), based on the work of Paxson (1995), was used to generate 
streams of synthetic traffic with controlled properties.  The program option of generating a real 

                                                 
* These values were chosen arbitrarily to reduce scatter arising from the availability of only a few samples or a few points 

within the samples.  Other values would work as well. 
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traffic trace was used.  Traffic streams with differing means, variances, and degrees of self-
similarity, as reflected in H, were generated.  The traffic streams could be of any size but, 
typically, were over a million (220) increments.  Larger traffic streams could easily be generated 
because the program is very fast, but a million time increments seemed adequate. 

There are at least two ways of imposing two or more self-similar processes on a traffic stream.  
One is to generate a single traffic stream by successively imposing two or more processes that, 
individually, impose self-similarity.  Another is to merge two or more streams of traffic, each 
with a degree of self-similarity.  The latter was selected in this case, since all of the tools to do so 
were on hand.  Traffic streams with multiple fractal properties were generated by merging two 
streams with differing values of H.  These were used to estimate the ability of the statistical tool 
to distinguish between traffic streams of differing properties. 

The merging of two streams may represent the case of a network with streams from two 
independent sources of differing self-similarity characteristics.  A traffic stream generated by a 
series of processes, each of which, acting alone, would generate a stream with one set of self-
similar characteristics, might represent an open system interconnect (OSI) stack with a 
heavy-tailed file-size distribution and a TCP that also imposes self-similarity on the traffic 
stream.  The latter may be done in future research, since it is a very plausible representation of 
tactical network traffic.  For simplicity, the analysis has so far been restricted to the simpler 
case—the merger of two independent traffic streams.  No attempt has been made to impose 
carrier sense multiple access on the merging process; this amounts to an assumption of a link 
running at a sufficiently low fraction of the possible throughput such that collisions are unlikely.  
This is not a realistic representation of a tactical network but is a simple way to begin the 
analysis. 

It is highly desirable to model the imposition of multiple self-similar processes on a single traffic 
stream; the Optimized Network Engineering Tool (OPNET)* provides excellent software for this, 
since it requires explicitly modeling the OSI stack.  It is also highly desirable to model CSMA in 
heavily loaded networks and to have multiple traffic streams of differing characteristics.  Again, 
OPNET may be a very useful tool for this. 

The output from the traffic generator was analyzed using the variance-time plot discussed 
previously.  The output was reasonably well-behaved, but there are several cautions in the use of 
the Paxson model.  The first is that it is an approximation.  According to Paxson, the output trace 
produced by his methodology is only approximately self-similar, even though the output trace 
passes four tests for self-similarity:   

1. the variance of the sample means vs. sample size (the “variance-time plot”), 

2. Beran’s goodness-of-fit test, 

                                                 
* OPNET is a registered trademark of OPNET Technologies, Inc., Bethesda, MD. 
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3. Whittle’s estimator, and 

4. normality or near-normality of the marginal distribution of the sample. 

Paxson refers to this as the “quacks like a duck” phenomenon:  if it walks like a duck and quacks 
like a duck, one may as well call it a duck.  In that case, if the data act self-similar, then for 
engineering purposes they may be treated as such (Paxson, 1995). 

The output trace from the traffic generator produced for this effort was tested using the variance-
time plot.  The data were well behaved; the estimated H of the resulting traffic stream was 
approximately that of the input value of H.  Visual inspection of the goodness of fit should be 
validated by more rigorous statistical methods. 

In addition, the traffic generator lists intermediate and final values of the traffic stream mean and 
variance and cautions that they may vary from the input values.  The final output values for the 
mean and variance were found to replicate the input values exactly.  In addition, when the traffic 
streams were analyzed by a separate program to calculate the mean and variance, the mean and 
variance of the generated output trace were found to be in very good agreement with the input 
values.  The other traffic parameters also appeared to be well behaved.  This is discussed below.  
Although the synthetic traffic was well behaved, future work should include new methods of 
generating the synthetic traffic to check this assumption. 

3. Data Analysis 

The ARL has performed a number of statistically controlled tactical radio network experiments.  
The baseline experiment and its results are fully described elsewhere (Kaste et al., 1992).  This 
report focuses on exploring the self-similar properties of tactical communications data collected 
during a 1984 field experiment and synthetically generated laboratory data. 

3.1 Synthetic Traffic 

To gain some insight into the phenomenon of self-similarity and to estimate the utility of the 
variance-time tool, synthetic traffic was generated as described previously.  Several observations 
are in order. 

The tool should respond to some degree to the input mean value of the traffic streams because 
the variance is a second-order phenomenon.  This can be seen in appendix A, figures A-1 
through A-3.  For example, figure A-1 shows uncorrelated traffic with means differing by 20:1.  
There is a substantial difference.  Figure A-2 illustrates moderately correlated traffic with means 
varying by 2:1.  There is little impact in that case.  Streams with fixed values of H and variance 
but differing values of the overall (input) mean were plotted together.  The plots were similar, 
increasing only slowly as the sample mean increased, for values of H = 0.5, 0.7, and 0.9.
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In addition, plots were made of streams with the same values of the input mean and variance but 
differing values of H (figures 1 and 2).  Since this test is sensitive to the long-range correlation of 
traffic, it is not surprising that traffic with higher values of H should be differentiated at longer 
time scales, provided the long-term memory is strong enough.  Likewise, since self-similarity 
accompanies burstiness, it is not surprising that traffic with a higher degree of self-similarity 
should be differentiated from traffic with little or no self-similarity at lower time scales as well.  
The implication is that, if the time scale can be sufficiently extended, traffic streams with 
components of differing self-similarity should be discernable with this graphical method. 

Figure 1.  Variance-time plot of synthetic traffic streams with differing H. 

Traffic streams of differing degrees of self-similarity were generated as discussed using Paxson’s 
scheme for approximating self-similar traffic, which uses an FFT FGN.  Traffic streams with  
H = 0.5 (uncorrelated), H = 0.7 (moderately correlated), and H = 0.9 (highly correlated) were 
generated and are plotted in figure 1.  Initially, the traces were 1,048,576 arbitrary time steps 
(220) with traffic expressed in terms of arbitrary units.  These traffic streams had input mean 
values of 1000 and variances of 300.  That is, from the standpoint of an analysis, ignoring self-
similarity, the traffic streams are nominally of identical statistical characteristics.  As can be seen 
in figure 1, the variance of the sample means vs. sample size of the synthetic traffic indicates that 
the characteristics of the traffic streams are radically different. 
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Figure 2.  Variance-time plot of synthetic traffic streams with differing H merged. 

Figure 2 indicates that when streams with similar input means and input variances but differing 
Hs are summed pairwise, the trace of the summed traffic is essentially indistinguishable by 
inspection from the trace of the more self-similar traffic stream.  That is, the contribution to the 
variance of the sample means (a measure of burstiness) from the more self-similar traffic, under 
these conditions, masks all other contributions from all other components of the traffic.  It is also 
clear that a traffic stream with H = 0.5, but a substantially greater mean and variance, might well 
show up in the analysis of the summed stream.  This is illustrated in figure 3.  Indeed, analysis of 
the field test data indicates such a phenomenon might have taken place in two of the exercises. 

In this variance-time plot, three synthetic traffic streams are shown.  One stream (H = 0.5, input 
mean = 100,000, and input variance = 10,000) represents the background traffic.  Another stream 
(H = 0.9, input mean = 500, and input variance = 300) represents a highly variable but highly 
correlated traffic stream, perhaps, of a network scan.  The merged stream has a mean of 100,500 
and a variance essentially the same as the larger stream.  The merged stream shows a pronounced 
“knee” in the curve, since the second-order characteristics of the traffic stream with H = 0.9 
dominate the curve for larger sample sizes and the characteristics of the uncorrelated stream 
dominate the curve for smaller sample sizes.  Note this assumes the long-term memory of the H 
= 0.9 stream is quite strong.  For background traffic with H = 0.5 but lower variance, the 
characteristics of the merged stream are indistinguishable by inspection from the highly self-
similar stream, but these curves are not shown.  Many permutations of the traffic characteristics
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Figure 3.  Variance-time plot showing effects of increased mean and variance on merged traffic 
streams. 

are possible, including those where the smaller stream would be undetectable by graphical 
methods but possibly detectable by more subtle statistical analysis and those where the smaller 
stream would be simply undetectable. 

3.2 Field Test Data 

The three traffic streams from the field exercise are plotted in figure 4.  From the variance-time 
plot, the traffic clearly exhibits characteristics of self-similarity.  Approximate fits to the data are 
shown; all three traffic streams are quite different from the reference line, with the slope 
indicating H = 0.5.  Interestingly, the traffic exhibits a considerable degree of self-similarity, 
with the appearance of H ~ 0.9.  Even more interesting are the traffic streams, corresponding to 
the first week of the field exercise (FEX 1), which appear to consist of two components:  one 
with H ~ 0.5 and the other with H ~ 0.9.  The stream produced by the third week of testing  
(FEX 3) also appears to exhibit two components.  The other, from the second week (FEX 2), 
does not appear to do so.  Since the traffic was generated under similar conditions and 
constraints, it is not clear why the streams would differ or what phenomena produced the 
differences. 
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Figure 4.  FIST FDT&E II data with reference line, slope = –1 (H = 0.5). 

4. Discussion 

There are a number of reasons to suspect that the field test data would demonstrate some degree 
of self-similarity.  Some of these phenomena might also reasonably be expected to apply to the 
results of a laboratory test.  Possible phenomena of interest in the field test data are the reliable 
transport mechanism and file size distribution. 

Traffic using the TCP/IP suite has been reported as self-similar in contrast to User Datagram 
Protocol traffic, which shows little long-range dependence (Park et al., 1996).  This is 
reasonable.  TCP/IP, in imposing a reliability and control mechanism, produces a series of 
messages to ensure delivery.  Thus, a message triggers predictable traffic into the future.  It has 
been stated that retransmission mechanisms may make even a Poisson distribution traffic model 
appear self-similar (Tsybakov and Georganas, 1998). 

The Tactical Fire Direction System (TACFIRE) protocol acts to a degree as a reliable transport 
protocol.  The TACFIRE protocol requires responses from the message recipients similar to the 
SYN and ACK processes of the TCP/IP.  Several possible factors that may impose self-similarity 
have been enumerated in the literature, among them being the effects of queued and buffered 
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traffic (addition of flow and reliability mechanisms), user “think time,” and the implications 
from the ON-OFF model, as described in (Grossglauser and Bolot, 1999; Willinger et al., 1997). 

Parenthetically, it should be noted that the series of ACK messages typical of the TCP/IP are also 
found in the X.25 protocol, the staple underlying protocol of the Mobile Subscriber Equipment 
(MSE), the military cellular radio system.  The implication is that the packet network based on 
MSE may also exhibit self-similar behavior, with its own characteristic time scale.  This was not 
a factor in the ARL experiments but may well be a factor in actual tactical traffic.  The field test 
data described in Appendix B do not involve an MSE and, therefore, do not involve an X.25 link 
either. 

Any self-similarity actually generated by these phenomena in the laboratory test data may be 
hard to find because of low message rates that, in spite of being low compared to commercial 
applications, still loaded the net sufficiently to preclude a greater range of traffic rates.  The 
laboratory test data were collected across a range of message sizes, but these messages were 
independent and not part of a train of packets composing a single large file.  This may be a factor 
in tactical networks. 

A file-size distribution weighted with a tail of large files (heavy-tailed file-size distributions) has 
been demonstrated to impose self-similarity on network traffic (Leland et al., 1994; Peha, 1997).  
It is likely that file-size distributions differ from place to place in the tactical net, at least at the 
present time.  At the small-unit level, each combat vehicle has an appliqué computer, and 
updates to the situation maps occur frequently.  These map updates are vector-based and, hence, 
shorter than bitmaps.  Other messages such as calls for fire are preformatted and short; file sizes 
in the field test data included numerous preformatted messages of 20 and 52 bytes. 

At the headquarters level, the situation is more complex.  In a tactical headquarters today, there 
is a host of preformatted messages such as Maneuver Control System (MCS) data.  These are 
individually short, but in a sense, MCS updates could be considered a very long message (file), 
since a particular update will surely be followed by another later on that is part of the same 
sequence.  This also implies a contribution to autocorrelation over long time periods.  Other 
command-related traffic could involve pictures, maps, and planning documents.  The traffic at 
different levels of a tactical network might well be dominated by different file-size distributions.  
If self-similarity occurs at the two levels, there might well be different time scales or levels of 
self-similarity for the traffic streams, hence, different fractal properties.  If traffic from two levels 
shares the same trunk, the net traffic would be a superposition of traffic with two or more time 
scales (multifractal), but relative characteristics of the two streams might mask all but a time 
scale associated with dominant traffic.  Recent efforts to deliver imagery from satellites and air 
reconnaissance to units at the lowest level indicate that substantial file sizes may well extend to 
all areas of the tactical net, further complicating the issue. 
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5. Implications of Multifractal Behavior 

5.1 Implications for Current Work 

There is ongoing work to investigate multifractal properties of network traffic.  This work is, 
however, on commercial traffic, not tactical.  An unusually tacit assumption made by the 
investigators is that the traffic does not change its fundamental properties (i.e., stationarity) 
during the time intervals analyzed and the time the data are grouped.  The emerging trends 
outlined in this report indicate that tactical network traffic may, indeed, be multifractal.  The 
combat cycle may well produce traffic that is emphatically not stationary in its properties.   

An example is defense, during a pause in the operational tempo, shifting to the assault; the times 
would be the most demanding and crucial to combat success.  Network designs or specifications 
generated as a result of the application of the results of research on commercial traffic may well 
lead to massive inadequacies of network capability when the tactical networks in their turn 
violate stationarity. 

5.2 Implications for Intrusion Detection 

The possibility of differentiating between two or more streams of traffic of differing levels of 
self-similarity may make it possible to detect the presence of a new, alien traffic stream in a 
network.  An example might be an attack or reconnaissance scan of a network.  If the scan were 
to interrogate many different hosts in a particular block of IP addresses, switching back and forth 
from one host to another to avoid raising suspicions by dwelling on a particular host and not 
presenting a regular pattern by interrogating a set pattern of ports, the actual traffic to all of the 
targets might be distinguishable as such over the network.  It is necessary to measure the self-
similarity and other characteristics of traffic produced by several attack tools and reconnaissance 
tools (scanners) and to measure the properties of a network as time and circumstances change.  A 
possible example of such a scenario is illustrated in figure 4.  In this variance-time plot, several 
traffic streams are shown.  In particular, a typical traffic stream with H = 0.5 merged with a 
traffic stream with H = 0.9 should present a clear indication of a change to the flow composed of 
two distinct streams, even though the overall (input) mean of the traffic stream with H = 0.5 is 
200 times greater than the other.  The usual network traffic should be characterized by H > 0.5, 
but the message flow from a network scan might be even larger. 

5.3 Implications for Analysis 

A method for discerning traffic characteristics of multifractal traffic must be obtained.  
Wavelet-based methods have been used by other researchers and seem to hold promise for this 
work as well (Park and Willinger, 2000). 
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6. Summary 

Field test data gathered during the FIST FDT&E II indicated that a low bandwidth tactical radio 
network generated traffic exhibiting the characteristics of self-similarity.  This was not 
unexpected.  Furthermore, in two of the traffic streams, there appeared to be evidence of two 
components of self-similarity corresponding to near-zero correlation and highly correlated.  The 
reasons were not clear. 
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Appendix A.  Variance-Time Plots of Synthetic Traffic 

Note that the plots in figure A-1 fall in approximately the same region over a considerable range 
of input means (500, 600, 1000, and 10,000 units) and a fixed input variance of 300 units. 

Figure A-1.  Variance-time plot of synthetic traffic streams with H = 0.5 
(uncorrelated). 

Figure A-2 indicates that for moderately correlated traffic (H = 0.7), with a fixed input variance 
of 300 units and input means ranging from 500 to 1000 units, the plots fall approximately on the 
same line. 

Figure A-2.  Variance-time plot of synthetic traffic streams with H = 0.7 
(moderately correlated). 
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The behavior of the plot in figure A-3 is similar to the behavior of the plot in figure A-1.  The 
input variance in this plot has also been fixed to 300 units.  Note the occasional outlying points.  
These are probably artifacts of the small sample sizes.  Scatter due to large sample size may also 
occur as the number of samples becomes small.  Truncation of the analysis program is set to a 
cell size of ≤8. 

Figure A-3.  Variance-time plot of synthetic traffic streams with H = 0.9 (highly 
correlated). 
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Appendix B.  Description of Fire Support Team Force Development Testing 
and Experimentation II (FIST FDT&E II) 

The field test data were gathered during the FIST FDT&E II.  This test was conducted and 
extensively documented by the Human Engineering Laboratory and the U.S. Army Ballistic 
Research Laboratory.1, 2  The test involved a mechanized infantry task force composed of two 
mechanized infantry companies and one armor company.  The task force was one-third of the 
Field Artillery assets of a maneuver brigade.  The experiment was run in three iterations at  
Ft. Riley, KS.  Two iterations were Scenario-Oriented Recurring Evaluation System Europe 
V-based scenario driven field exercises (FEX), while the third was a free-play force-on-force 
exercise.  The networks tested were devoted to digital traffic generated by digital message 
devices, using preformatted messages, over analog fixed frequency voice radios (AN/PRC 77).  
The layout of the network is shown in figure B-1. 

Data were collected manually and by use of traffic recorded from a central point.  The taped data 
were digitized and inserted into a message collection and recording system.  The recorded traffic 
was frequency shift keyed, and the traffic was converted to RS 232 ASCII format by use of “bit 
box,” modems, which allow Tactical Fire Direction System (TACFIRE) hardware to 
communicate with commercial computers.  Messages were sorted by fire mission into three 
categories:  (1) messages grouped by fire mission number, (2) unknown messages, and (3) 
messages known but not part of a fire mission.  The data were sent to the Field Artillery School 
at Ft. Sill, OK, for in-depth analysis and conversion into a comprehensive database.  The data 
analyzed here are raw traffic, not sorted or otherwise reduced by purpose.2 

Data were collected for three networks:  (1) the Company Fire Control Net (CFC Net), (2) the 
Mortar Fire Direction Net (MFD Net), and (3) the Fire Direction Net (FD Net).  It is not clear 
which data (FEX 1, 2, or 3) for a data stream used here came from which net, though they were 
apparently interleaved by time.  A total of 344 hr of data was collected, 22 hr of which were 
from noncontrolled parts of the test and not digitized.  The other 322 hr of data were categorized, 
as shown in table B-1. 

The breakdown into message type is extremely interesting, as shown in table B-2.  The variable 
format (VF) message traffic over the CFC3 and MFD nets is surprising because these nets 
contained digital devices capable of producing only fixed format messages.  Kaste et al.1 
speculated that players with devices capable of generating VF messages were probably on the 
wrong communications nets.  This is reasonable.  Unlike a voice net, at that time, there was no  

                                                 
1 Kaste, V. A. T.; Brodeen, D. C.; Winner, W. A.  Description of the Digital Data Collected From FIST FDT&E II; 

BRL-TR-2676; U.S. Army Ballistic Research Laboratory:  Aberdeen Proving Ground, MD, September 1985. 
2 Grynovicki, J. O.; Smith, J. H.  Experimental Design and Analysis for the FIST Force Development Testing and 

Experimentation II; BRL-MR-3474; U.S. Army Ballistic Research Laboratory:  Aberdeen Proving Ground, MD, October 1985. 
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Figure B-1.  Layout of the FIST FDT&E II network. 

 

Table B-1.  Digital message traffic collected.1 

 
Nets 

Good 
Messages 

Unintelligible 
Messages 

Percent 
Unintelligible 

Total 
Messages 

CFC1 10,103 746 7 10,849 

CFC2 9268 1341 13 10,609 

CFC3 11,839 1398 11 13,237 

FD1 97,880 2631 3 100,511 

FD2 24,552 1430 6 25,982 

MFD 5780 3651 39 9431 

Totals 159,422 11,197 7 170,619 
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Table B-2.  Good messages by type.1 

Nets ACKs Fixed Format Variable Format Total Messages 

CFC1 4569 5534 0 10,103 

CFC2 3578 5690 0 9268 

CFC3 5503 4069 2267 11,839 

FD1 44,512 33,411 19,957 97,880 

FD2 10,688 118 13,746 24,552 

MFD 2381 3233 76 5780 

Totals 71,231 52,145 36,046 159,422 

 
authentication or error-checking procedure for digital networks as there is in the voice radio 
procedure (e.g., Bravo Tango seven-four, this is Golf Sierra six; you do not belong on this net, 
over).  Also, all but four of the messages on the CFC3 and MFD nets occurred during the 
free-play FEX 3; the other four occurred during the noncontrolled portion of FEX 2.  That could 
account for a contribution of self-similarity in FEX 3; unfortunately, there is only a hint of such 
behavior (see figure 4). 

VF messages can be lengthy (100–1500 characters) as opposed to fixed format messages 
(48 characters).  The message length does not include synchronization characters or the 
preamble.  It may be that the message traffic generated by VF messages introduces a degree of 
autocorrelation:  if the message is being transmitted, there is a good chance it is still being 
transmitted some time from now.  It is, however, more likely that the self-similarity is largely an 
artifact of the reliable transport function of the TACFIRE protocol. 
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